Respuesta :
check the picture below.
so is really just a cylinder with a cone on the side, notice, since the diameter of the base is 4, the radius is half that then.
so we just simply get the volume of the cylinder, and the cone, and sum them up
[tex]\bf \textit{volume of a cylinder}\\\\ V=\pi r^2 h\quad \begin{cases} r=radius\\ h=height\\ -----\\ r=2\\ h=6 \end{cases}\implies V=\pi \cdot 2^2\cdot 6\\\\ -------------------------------\\\\ \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}\quad \begin{cases} r=radius\\ h=height\\ -----\\ r=2\\ h=2 \end{cases}\implies V=\cfrac{\pi \cdot 2^2\cdot 2}{3}\\\\ -------------------------------\\\\ \stackrel{cylinder's~volume}{24\pi }~~+~~\stackrel{cone's~volume}{\cfrac{8\pi }{3}}[/tex]
so is really just a cylinder with a cone on the side, notice, since the diameter of the base is 4, the radius is half that then.
so we just simply get the volume of the cylinder, and the cone, and sum them up
[tex]\bf \textit{volume of a cylinder}\\\\ V=\pi r^2 h\quad \begin{cases} r=radius\\ h=height\\ -----\\ r=2\\ h=6 \end{cases}\implies V=\pi \cdot 2^2\cdot 6\\\\ -------------------------------\\\\ \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}\quad \begin{cases} r=radius\\ h=height\\ -----\\ r=2\\ h=2 \end{cases}\implies V=\cfrac{\pi \cdot 2^2\cdot 2}{3}\\\\ -------------------------------\\\\ \stackrel{cylinder's~volume}{24\pi }~~+~~\stackrel{cone's~volume}{\cfrac{8\pi }{3}}[/tex]
Answer: 84yd
Step-by-step explanation:
Vcylinder=πr2h
=π(2)2(6)
=24π
≈24(3.14)
≈75.36 yd
_____________________
The height of the cone is the height of the figure minus the height of the cylinder:
8 yd−6 yd=2 yd
Vcone=13πr2h
=13π(2)22
=223π
≈223(3.14)
≈8.37 yd3
Add the volumes.
75.36 yd3+8.37 yd3=83.73 yd3
To the nearest cubic yard, the volume is 84 yd3.