​ Quadrilateral ABCD ​ is inscribed in this circle. What is the measure of angle C? Enter your answer in the box.

Quadrilateral ABCD is inscribed in this circle What is the measure of angle C Enter your answer in the box class=

Respuesta :

Answer:

[tex]m<C=62\°[/tex]

Step-by-step explanation:

we know that

In an inscribed quadrilateral opposite angles are supplementary

so

In this problem

[tex]m<D+m<B=180\°[/tex]

[tex]m<C+m<A=180\°[/tex]

step 1

Find the value of x

[tex]m<D+m<B=180\°[/tex]

substitute the values and solve for x

[tex](x+20)\°+(3x)\°=180\°[/tex]

[tex]4x=180\°-20\°[/tex]

[tex]x=160\°/4=40\°[/tex]

step 2

Find the measure of angle A

[tex]m<A=(2x+38)\°=2(40\°)+38\°=118\°[/tex]

step 3

Find the measure of angle C

[tex]m<C+m<A=180\°[/tex]

substitute the values and solve for m<C

[tex]m<C+118\°=180\°[/tex]

[tex]m<C=180\°-118\°=62\°[/tex]

Answer:

62 i took the test

Step-by-step explanation: