Respuesta :

Rodiak
We have
[tex] 4^{3} * \sqrt{4} [/tex]

We start by calculating square root:
[tex] 4^{3} *2 [/tex]

We can rewrite 4 in base of 2:
[tex]( 2^{2}) ^{3}*2[/tex]

Now we can calculate this by using rule of same base and different exponent:
[tex]2^{6}*2^{1} =2^{7} =128[/tex]

Answer:

Step-by-step explanation:

To find the function with simplified base, we change every composite no into prime no. by factorizing them and rewriting in exponential form.

Given: function [tex]4^3\times\sqrt{4}[/tex]

Here 4 is only composite no in base.

∴ the expontial form of 4 = [tex]2^2[/tex]

putting it in given function we get,

[tex](2^2)^3\times\sqrt{2^2}[/tex]

⇒ [tex]2^{2\times3}\times 2 [/tex] ( ∵ acc. to law of exponent, [tex](a^b)^c=a^b\timesc[/tex] )

⇒[tex]2^6\times2^1[/tex]

⇒[tex]2^{6+1}[/tex] ( ∵ acc. to law of exponent, [tex]x^a\times x^b=x^{a+b}[/tex] )

⇒[tex]2^7[/tex]

⇒ 2×2×2×2×2×2×2

128