Respuesta :
sin(t)=8/17
cos(t)=-15/17
tan(t)=-8/15
sec(t)=-17/15
csc(t)=17/8
cot(t)=-15/8
cos(t)=-15/17
tan(t)=-8/15
sec(t)=-17/15
csc(t)=17/8
cot(t)=-15/8
Point P is on the unit circle U. The values of trigonometric functions at t are [tex]sin\theta=\dfrac{8}{17},\;cos\theta=-\dfrac{15}{17}[/tex][tex],tan\theta=-\dfrac{8}{15},\;cot \theta=-\dfrac{15}{8},\;cosec\theta=\dfrac{17}{8},\;sec\theta=-\dfrac{17}{15}[/tex].
Given:
From the given figure, the coordinate of point P is [tex](-\dfrac{15}{17}, \dfrac{8}{17})[/tex].
The point P is present on a unit circle U. So, in general, the coordinates of a point on the circle will be [tex](x,y)\equiv (cos\theta, sin\theta)[/tex].
By comparing the given coordinate with the general expression, the value sine and cosine function will be,
[tex]sin\theta=\dfrac{8}{17}\\cos\theta=-\dfrac{15}{17}[/tex]
Now, the other trigonometric functions will be,
[tex]tan\theta=\dfrac{sin\theta}{cos\theta}\\tan\theta=-\dfrac{8}{15}\\cot \theta=-\dfrac{15}{8}\\cosec\theta=1/sin\theta=\dfrac{17}{8}\\sec\theta=1/cos\theta=-\dfrac{17}{15}[/tex]
Therefore, the values of trigonometric functions at t are [tex]sin\theta=\dfrac{8}{17},\;cos\theta=-\dfrac{15}{17}[/tex][tex],tan\theta=-\dfrac{8}{15},\;cot \theta=-\dfrac{15}{8},\;cosec\theta=\dfrac{17}{8},\;sec\theta=-\dfrac{17}{15}[/tex].
For more details, refer to the link:
https://brainly.com/question/25090596