so, we know the sum of the first 17 terms is -170, thus S₁₇ = -170, and we also know the first term is 2, well
[tex]\bf \textit{ sum of a finite arithmetic sequence}\\\\
S_n=\cfrac{n(a_1+a_n)}{2}\qquad
\begin{cases}
n=n^{th}\ term\\
a_1=\textit{first term's value}\\
----------\\
n=17\\
S_{17}=-170\\
a_1=2
\end{cases}
\\\\\\
-170=\cfrac{17(2+a_{17})}{2}\implies \cfrac{-170}{17}=\cfrac{(2+a_{17})}{2}
\\\\\\
-10=\cfrac{(2+a_{17})}{2}\implies -20=2+a_{17}\implies -22=a_{17}[/tex]
well, since the 17th term is that much, let's check what "d" is then anyway,
[tex]\bf n^{th}\textit{ term of an arithmetic sequence}\\\\
a_n=a_1+(n-1)d\qquad
\begin{cases}
n=n^{th}\ term\\
a_1=\textit{first term's value}\\
d=\textit{common difference}\\
----------\\
n=17\\
a_{17}=-22\\
a_1=2
\end{cases}
\\\\\\
-22=2+(17-1)d\implies -22=2+16d\implies -24=16d
\\\\\\
\cfrac{-24}{16}=d\implies -\cfrac{3}{2}=d[/tex]