Respuesta :

to determine if it is even replace x with -x and see if the answer is identical.

 In this case, this function is even

Answer:

The function [tex]f(x)=x^6-x^4[/tex] is:

Even

Step-by-step explanation:

A function f(x) is even if:

f(-x)= f(x)

A function f(x) is odd if:

f(-x)= -f(x)

Here, we are given a function f(x) as:

[tex]f(x)=x^6-x^4[/tex]

[tex]f(-x)=(-x)^6-(-x)^4\\\\ =x^6-x^4\\\\=f(x)[/tex]

f(-x)=f(x)

Hence, the function [tex]f(x)=x^6-x^4[/tex] is:

Even

ACCESS MORE
EDU ACCESS
Universidad de Mexico