to determine if it is even replace x with -x and see if the answer is identical.
In this case, this function is even
Answer:
The function [tex]f(x)=x^6-x^4[/tex] is:
Even
Step-by-step explanation:
A function f(x) is even if:
f(-x)= f(x)
A function f(x) is odd if:
f(-x)= -f(x)
Here, we are given a function f(x) as:
[tex]f(x)=x^6-x^4[/tex]
[tex]f(-x)=(-x)^6-(-x)^4\\\\ =x^6-x^4\\\\=f(x)[/tex]
f(-x)=f(x)
Hence, the function [tex]f(x)=x^6-x^4[/tex] is:
Even