Respuesta :
this is the graph
if put 0 and 1 for x then :
[tex]x = 0 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 1 \\ y = - 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 12 \\ \binom{x}{y } = \binom{0}{ - 1} \: \: \: \: \binom{1}{12} [/tex]
if put 0 and 1 for x then :
[tex]x = 0 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 1 \\ y = - 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 12 \\ \binom{x}{y } = \binom{0}{ - 1} \: \: \: \: \binom{1}{12} [/tex]
Answer:
Given the equation: [tex]y = \frac{1}{3}x -1[/tex] .....[1]
To find the intercepts:
x-intercepts states that the graph cross the x-axis.
Substitute the value of y = 0 in [1] to solve for x;
[tex]0 = \frac{1}{3}x-1[/tex]
Add 1 to both sides we get;
[tex]1 = \frac{1}{3}x[/tex]
Multiply both sides by 3 we get;
[tex]3 = x[/tex]
x-intercepts = (3, 0)
y-intercepts states that the graph cross the y-axis
Substitute the value x = 0 in [1] to solve for y;
[tex]y = \frac{1}{3}(0) -1[/tex]
Simplify:
y = -1
y-intercept = (0, -1)
Now, using these x- and y--intercepts points to graph the given equation [tex]y = \frac{1}{3}x -1[/tex] as shown below.

