Respuesta :
one may note that (1.6 , 6) is just another way to say x = 1.6 when y = 6.
and that (8 , y) is another way to say x = 8 and y is who knows.
[tex]\bf \qquad \qquad \textit{inverse proportional variation}\\\\ \textit{\underline{y} varies inversely with \underline{x}}\qquad \qquad y=\cfrac{k}{x}\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array}\\\\ -------------------------------[/tex]
[tex]\bf \textit{we know that } \begin{cases} x=1.6\\ y=6 \end{cases}\implies 6=\cfrac{k}{1.6}\implies 6(1.6)=k\implies 9.6=k \\\\\\ \qquad therefore\qquad \boxed{y=\cfrac{9.6}{x}} \\\\\\ \textit{when x = 8, what is \underline{y}?}\qquad y=\cfrac{9.6}{8}[/tex]
and that (8 , y) is another way to say x = 8 and y is who knows.
[tex]\bf \qquad \qquad \textit{inverse proportional variation}\\\\ \textit{\underline{y} varies inversely with \underline{x}}\qquad \qquad y=\cfrac{k}{x}\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array}\\\\ -------------------------------[/tex]
[tex]\bf \textit{we know that } \begin{cases} x=1.6\\ y=6 \end{cases}\implies 6=\cfrac{k}{1.6}\implies 6(1.6)=k\implies 9.6=k \\\\\\ \qquad therefore\qquad \boxed{y=\cfrac{9.6}{x}} \\\\\\ \textit{when x = 8, what is \underline{y}?}\qquad y=\cfrac{9.6}{8}[/tex]
Answer: 1.2
Step-by-step explanation:
The formula for inverse variation is given by :-
[tex]x_1y_1=x_2y_2[/tex]
The given points : (1.6, 6) and (8, y)
It means at x = 1.6 , y=6 .
To find the value of y at x=8 , we substitute [tex]x_1=1.6,\ y_1=6\, \text{ and}\ x_2=8,\ y_2=y[/tex] in the above formula , we get
[tex]1.6\times6=8y\\\\\Rightarrow\ y=\dfrac{1.6\times6}{8}\\\\\Rightarrow\ y=1.2[/tex]
Thus, the missing value = 1.2