This figure is made up of a quadrilateral and a semicircle.

What is the area of this figure?

Use 3.14 for pi. Round your answer to the nearest tenth.

A.) 22.8 units²

B.) 40.4 units²

C.) 45.5 units²

D.) 74.5 units²

This figure is made up of a quadrilateral and a semicircle What is the area of this figure Use 314 for pi Round your answer to the nearest tenth A 228 units B 4 class=

Respuesta :

Answer:

The correct option is B. The area of the figure is 40.4 units².

Step-by-step explanation:

The line AB divides the figure in two parts one is a rectangle and another is semicircle.

The distance formula is

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

The length of AB is

[tex]AB=\sqrt{(2+3)^2+(4-2)^2}=\sqrt{25+4}=\sqrt{29}[/tex]

The length of AD is

[tex]AD=\sqrt{(-1+3)^2+(-3-2)^2}=\sqrt{4+25}=\sqrt{29}[/tex]

Since AB=AD, therefore ABCD is a square. The area of the of square is

[tex]A_1=a\times a=\sqrt{29}\times \sqrt{29} =29[/tex]

The area of square is 29 units².

The area of a semicircle is

[tex]A_2=\frac{\pi}{2}r^2[/tex]

Since AB is the diameter of the semicircle, therefore the radius of the semicircle is

[tex]r=\frac{d}{2}=\frac{\sqrt{29}}{2}[/tex]

The area of the semicircle is

[tex]A_2=\frac{3.14}{2}(\frac{\sqrt{29}}{2})^2=40.3825[/tex]

The area of the figure is

[tex]A=A_1+A_2=29+11.2825=40.3825\approx 40.4[/tex]

Therefore the area of the figure is 40.4 units². Option B is correct.

Ver imagen DelcieRiveria
ACCESS MORE