Respuesta :
First term a1 = 6+5 = 11
second term = 12+5 = 17
common difference = 6
Sum of n terms:-
Sn = (n/2) [ 2a1 + d(n - 1)]
Sum of 30 terms:-
S30 = (30/2)[ 2*11 + 6(30-1)]
= 15 * ( 22 + 174)
= 15 * 196
= 2940 Answer
second term = 12+5 = 17
common difference = 6
Sum of n terms:-
Sn = (n/2) [ 2a1 + d(n - 1)]
Sum of 30 terms:-
S30 = (30/2)[ 2*11 + 6(30-1)]
= 15 * ( 22 + 174)
= 15 * 196
= 2940 Answer
Answer:
[tex]S_{30}=2940[/tex].
Step-by-step explanation:
Given : [tex]a_{n} =6n+5[/tex].
To find : The sum of the first 30 terms .
Solution: We have given [tex]a_{n} =6n+5[/tex].
For n = 1
[tex]a_{1} =6(1)+5[/tex].
[tex]a_{1} =6+5[/tex].
[tex]a_{1} =11[/tex].
For n =2
[tex]a_{2} =6(2)+5[/tex].
[tex]a_{2} =17[/tex].
Common difference = 17 - 11 = 6.
Sum of nth term : [tex]S_{n} =\frac{n}{2}[2a+(n-1)d][/tex].
d = common difference = 6.
For n = 30 .
[tex]S_{30} =\frac{30}{2}[2(11+(30-1)6][/tex].
[tex]S_{30} =15[22+29 *6][/tex].
[tex]S_{30} =15[22+29 *6][/tex].
[tex]S_{30} =15[22+174][/tex].
[tex]S_{30} =15[196][/tex].
[tex]S_{30}=2940[/tex].
Therefore, [tex]S_{30}=2940[/tex].