Mean number of errors in each page = 0.01
Mean number of errors in 100 pages = 0.01*100=1
It is possible to use the cumulative distribution function (CMF), but the math is a little more complex, involving the gamma-function. Tables and software are available for that purpose.
Thus it is easier to evaluate with a calculator for the individual cases of k=0,1,2 and 3.
The Poisson distribution has a PMF (probability mass function)
[tex][/tex][tex]P(k):=\frac{\lambda^ke^{-\lambda}}{k!}[/tex]
with λ = 1
=>
[tex]P(0):=\frac{1^0e^{-1}}{0!}=0.3678794[/tex]
[tex]P(1):=\frac{1^1e^{-1}}{1!}=0.3678794[/tex]
[tex]P(2):=\frac{1^2e^{-1}}{2!}=0.1839397[/tex]
[tex]P(3):=\frac{1^3e^{-1}}{3!}=0.0613132[/tex]
=>
[tex]P(k<=3)=P(0)+P(1)+P(2)+P(3)=0.9810118[/tex]
or
P(k<=3)=0.9810 (to four decimal places)