Respuesta :
To solve this, it is easiest to find the least common multiple of the denominators which is 24. Now we can rewrite our fractions.
[tex] \frac{3}{8} [/tex]=[tex] \frac{9}{24} [/tex]
[tex] \frac{3}{4} [/tex]=[tex] \frac{18}{24} [/tex]
[tex] \frac{1}{2} [/tex]=[tex] \frac{12}{24} [/tex]
[tex] \frac{5}{6} [/tex]=[tex] \frac{20}{24} [/tex]
Now these fractions can be put in order:
[tex] \frac{9}{24} [/tex], [tex] \frac{12}{24} [/tex], [tex] \frac{18}{24} [/tex], [tex] \frac{20}{24} [/tex]
Reduce and you have your answer.
[tex] \frac{3}{8} [/tex], [tex] \frac{1}{2} [/tex], [tex] \frac{3}{4} [/tex], [tex] \frac{5}{6} [/tex]
[tex] \frac{3}{8} [/tex]=[tex] \frac{9}{24} [/tex]
[tex] \frac{3}{4} [/tex]=[tex] \frac{18}{24} [/tex]
[tex] \frac{1}{2} [/tex]=[tex] \frac{12}{24} [/tex]
[tex] \frac{5}{6} [/tex]=[tex] \frac{20}{24} [/tex]
Now these fractions can be put in order:
[tex] \frac{9}{24} [/tex], [tex] \frac{12}{24} [/tex], [tex] \frac{18}{24} [/tex], [tex] \frac{20}{24} [/tex]
Reduce and you have your answer.
[tex] \frac{3}{8} [/tex], [tex] \frac{1}{2} [/tex], [tex] \frac{3}{4} [/tex], [tex] \frac{5}{6} [/tex]
To order these, we need to get all of the to a common denominator.
3*3 = 9
8*3 = 24
9/24
3*6 = 18
4*6 = 24
18/24
1*12 = 12
2*12 = 24
12/24
5*4 = 20
6*4 = 24
20/24
Now, analyze these fractions and compare their numerators.
20/24 , 12/24 , 18/24 , 9/24
The least: 9/24
Greatest: 20/24
Final answer:
3/8 , 1/2 , 3/4 , 5/6
3*3 = 9
8*3 = 24
9/24
3*6 = 18
4*6 = 24
18/24
1*12 = 12
2*12 = 24
12/24
5*4 = 20
6*4 = 24
20/24
Now, analyze these fractions and compare their numerators.
20/24 , 12/24 , 18/24 , 9/24
The least: 9/24
Greatest: 20/24
Final answer:
3/8 , 1/2 , 3/4 , 5/6