Respuesta :

To solve this, it is easiest to find the least common multiple of the denominators which is 24. Now we can rewrite our fractions.
[tex] \frac{3}{8} [/tex]=[tex] \frac{9}{24} [/tex]
[tex] \frac{3}{4} [/tex]=[tex] \frac{18}{24} [/tex]
[tex] \frac{1}{2} [/tex]=[tex] \frac{12}{24} [/tex]
[tex] \frac{5}{6} [/tex]=[tex] \frac{20}{24} [/tex]

Now these fractions can be put in order:
[tex] \frac{9}{24} [/tex], [tex] \frac{12}{24} [/tex], [tex] \frac{18}{24} [/tex], [tex] \frac{20}{24} [/tex]

Reduce and you have your answer.
[tex] \frac{3}{8} [/tex], [tex] \frac{1}{2} [/tex], [tex] \frac{3}{4} [/tex], [tex] \frac{5}{6} [/tex]
To order these, we need to get all of the to a common denominator. 

3*3 = 9
8*3 = 24

9/24

3*6 = 18
4*6 = 24

18/24

1*12 = 12
2*12 = 24

12/24

5*4 = 20
6*4 = 24

20/24

Now, analyze these fractions and compare their numerators.

20/24 , 12/24 , 18/24 , 9/24

The least:  9/24
Greatest: 20/24

Final answer:   

3/8 , 1/2 , 3/4 , 5/6