Respuesta :

lukyo
If you're using the app, try seeing this answer through your browser:  https://brainly.com/question/866966

_______________


Evaluate the indefinite integral:

[tex]\mathsf{\displaystyle\int\!\dfrac{1}{(1-y)^2}\,dy}\\\\\\ =\mathsf{\displaystyle\int\!\dfrac{-1}{(1-y)^2}\cdot (-1)\,dy}\\\\\\ =\mathsf{\displaystyle- \int\!(1-y)^{-2}\cdot (-1)\,dy\qquad\quad(i)}[/tex]


Substitution:

[tex]\begin{array}{lcl} \mathsf{1-y=u}&\quad\Rightarrow\quad&\mathsf{y=1-u}\\\\ &&\mathsf{dy=-1\,du} \end{array}[/tex]


So the integral [tex]\mathsf{(i)}[/tex] becomes

[tex]=\mathsf{\displaystyle -\int\! u^{-2}\,du}\\\\\\ =\mathsf{-\,\dfrac{u^{-2+1}}{-2+1}+C}\\\\\\ =\mathsf{-\,\dfrac{u^{-1}}{-1}+C}\\\\\\ =\mathsf{u^{-1}+C}\\\\\\ =\mathsf{\dfrac{1}{u}+C}[/tex]

[tex]=\mathsf{\dfrac{1}{1-y}+C}\\\\\\\ \therefore~~\boxed{\begin{array}{c}\mathsf{\displaystyle\int\!\dfrac{1}{(1-y)^2}\,dy=\dfrac{1}{1-y}+C} \end{array}}\qquad\quad\checkmark[/tex]


I hope this helps. =)


Tags:  indefinite integral fraction rational substitution power differential calculus