Respuesta :
Using the Universal Gratitation Law, we have:
[tex]F= \frac{MmG}{d^2} \\ MmG=2*10^{20}*(3.84*10^8)^2 \\ MmG=29.4912*10^36[/tex]
Again applying the formula in the new situation, comes:
[tex]F= \frac{MmG}{d^2} \\ F= \frac{29.4912*10^36}{(1.92*10^8)^2} \\ \boxed {F=8*10^{20}}[/tex]
Number 4
If you notice any mistake in my english, please let me know, because i am not native.
[tex]F= \frac{MmG}{d^2} \\ MmG=2*10^{20}*(3.84*10^8)^2 \\ MmG=29.4912*10^36[/tex]
Again applying the formula in the new situation, comes:
[tex]F= \frac{MmG}{d^2} \\ F= \frac{29.4912*10^36}{(1.92*10^8)^2} \\ \boxed {F=8*10^{20}}[/tex]
Number 4
If you notice any mistake in my english, please let me know, because i am not native.
The strength of the gravitational forces between two masses is
inversely proportional to the square of the distance between them.
So if you change the distance to
(1.92 x 10⁸) / (3.84 x 10⁸) = 1/2
of what it is now, then you would change the force to
1 / (1/2)² = 4
of what it is now.
(4) x (2 x 10²⁰) = 8.0 x 10²⁰ newtons .