Respuesta :

(n^-3)^6=n^-18=1/n^18

the answer is D

Answer:

Option D is correct.

[tex](n^{-3})^{6}[/tex]   can be simplified as 1/n^18

Step-by-step explanation:

Using exponent rules:

[tex](a^n)^m = a^{nm}[/tex]

[tex]\frac{1}{a^n} = a^{-n}[/tex]

Given the expression:

[tex]\frac{1}{n^{18}}[/tex]

Apply the exponent rules:

⇒[tex]n^{-18}[/tex]

A.

[tex](n^2)^9[/tex]

⇒[tex]n^{2 \cdot 9} = n^{18}[/tex]

B.

[tex](n^(-9))^(-2)[/tex]

⇒[tex]n^{-2 \cdot -9} = n^{18}[/tex]

C.

[tex](n^{-6})^{-3}[/tex]

⇒[tex]n^{-6 \cdot -3} = n^{18}[/tex]

D.

[tex](n^{-3})^{6}[/tex]

⇒[tex]n^{-3 \cdot 6} = n^{-18}[/tex]

Therefore, [tex](n^{-3})^{6}[/tex] expression can be simplified as [tex]n^{-18}[/tex]