Respuesta :
Answer:
Option D is correct.
[tex](n^{-3})^{6}[/tex] can be simplified as 1/n^18
Step-by-step explanation:
Using exponent rules:
[tex](a^n)^m = a^{nm}[/tex]
[tex]\frac{1}{a^n} = a^{-n}[/tex]
Given the expression:
[tex]\frac{1}{n^{18}}[/tex]
Apply the exponent rules:
⇒[tex]n^{-18}[/tex]
A.
[tex](n^2)^9[/tex]
⇒[tex]n^{2 \cdot 9} = n^{18}[/tex]
B.
[tex](n^(-9))^(-2)[/tex]
⇒[tex]n^{-2 \cdot -9} = n^{18}[/tex]
C.
[tex](n^{-6})^{-3}[/tex]
⇒[tex]n^{-6 \cdot -3} = n^{18}[/tex]
D.
[tex](n^{-3})^{6}[/tex]
⇒[tex]n^{-3 \cdot 6} = n^{-18}[/tex]
Therefore, [tex](n^{-3})^{6}[/tex] expression can be simplified as [tex]n^{-18}[/tex]