Respuesta :
By definition we have that the final speed is:
Vf² = Vo² + 2 * a * d
Where,
Vo: Final speed
a: acceleration
d: distance.
We cleared this expression the acceleration:
a = (Vf²-Vo²) / (2 * d)
Substituting the values:
a = ((0) ^ 2- (60) ^ 2) / ((2) * (123) * (1/5280))
a = -77268 mi / h ^ 2
its stopping distance on a roadway sloping downward at an angle of 17.0 ° is:
First you must make a free body diagram and see the acceleration of the car:
g = 32.2 feet / sec ^ 2
a = -77268 (mi / h ^ 2) * (5280/1) (feet / mi) * (1/3600) ^ 2 (h / s) ^ 2
a = -31.48 feet / sec ^ 2
A = a + g * sin (θ) = -31.48 + 32.2 * sin17.0
A = -22.07 feet / sec ^ 2
Clearing the braking distance:
Vf² = Vo² + 2 * a * d
d = (Vf²-Vo²) / (2 * a)
Substituting the values:
d = ((0) ^ 2- (60 * (5280/3600)) ^ 2) / (2 * (- 22.07))
d = 175.44 feet
answer:
its stopping distance on a roadway sloping downward at an angle of 17.0 ° is 175.44 feet
Vf² = Vo² + 2 * a * d
Where,
Vo: Final speed
a: acceleration
d: distance.
We cleared this expression the acceleration:
a = (Vf²-Vo²) / (2 * d)
Substituting the values:
a = ((0) ^ 2- (60) ^ 2) / ((2) * (123) * (1/5280))
a = -77268 mi / h ^ 2
its stopping distance on a roadway sloping downward at an angle of 17.0 ° is:
First you must make a free body diagram and see the acceleration of the car:
g = 32.2 feet / sec ^ 2
a = -77268 (mi / h ^ 2) * (5280/1) (feet / mi) * (1/3600) ^ 2 (h / s) ^ 2
a = -31.48 feet / sec ^ 2
A = a + g * sin (θ) = -31.48 + 32.2 * sin17.0
A = -22.07 feet / sec ^ 2
Clearing the braking distance:
Vf² = Vo² + 2 * a * d
d = (Vf²-Vo²) / (2 * a)
Substituting the values:
d = ((0) ^ 2- (60 * (5280/3600)) ^ 2) / (2 * (- 22.07))
d = 175.44 feet
answer:
its stopping distance on a roadway sloping downward at an angle of 17.0 ° is 175.44 feet
The stopping distance of the car when the road slopes at 17⁰ is 128.7 ft.
The given parameters;
speed of the car, v = 60 mi/h
distance traveled on a level roadway = 123 ft
the sloping angle of the new road, Ф = 17⁰
A simple sketch of the problem is given below;
start-------------123ft--------------------end
17⁰ ↓
↓
↓
↓new end due to the given slope
A straight line joining the start and the new end point forms a hypotenuse of the triangle and it will be equal to the new stopping distance of the car.
Apply trigonometry ratio concept to determine the new stopping distance;
[tex]cos (\theta ) = \frac{adjacent}{hypotenuse} \\\\cos(17) = \frac{123 \ ft}{new \ stopping \ distance} \\\\new \ stopping \ distance = \frac{123 \ ft}{cos(17)} \\\\new \ stopping \ distance = \frac{123 \ ft}{0.956} \\\\new \ stopping \ distance = 128.7 \ ft[/tex]
Thus, the stopping distance of the car when the road slopes at 17⁰ is 128.7 ft.
Learn more here: https://brainly.com/question/11280532