Respuesta :
[tex]\bf ~~~~~~ \textit{Simple Interest Earned Amount}\\\\
A=P(1+rt)\qquad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to& \$900\\
r=rate\to 1.5\%\to \frac{1.5}{100}\to &0.015\\
t=years\to &2
\end{cases}
\\\\\\
A=900(1+0.015\cdot 2)\implies A=\stackrel{\stackrel{recall}{\mathbb{PEMDAS}}}{900(1+0.03)}\implies A=900(1.03)[/tex]
Answer : The correct expression of amount Vince will pay back altogether is, [tex]\$ 900+\frac{(\$900)\times (1.5)\times (2)}{100}[/tex]
Step-by-step explanation :
Given:
Principle = $900
Rate = 1.5 %
Time = 2 years
First we have to determine the simple interest.
Formula used :
[tex]S.I=\frac{PRT}{100}[/tex]
where,
P = principle
R = interest rate
T = time
S.I = simple interest
Now put all the given values in the above formula, we get the expression for simple interest.
[tex]S.I=\frac{(\$900)\times (1.5)\times (2)}{100}[/tex]
Now we have to determine the amount he will pay back.
Amount = Principle + Simple interest
Amount = [tex]\$ 900+\frac{(\$900)\times (1.5)\times (2)}{100}[/tex]
This is the correct expression of amount Vince will pay back altogether.
The given expression is wrong because in this expression divide by 100 not done.
Thus, the correct expression of amount Vince will pay back altogether is, [tex]\$ 900+\frac{(\$900)\times (1.5)\times (2)}{100}[/tex]