Respuesta :
QM=2 MR=4 SN=3 NR=3) NOT Parallel
QM=2 MR=5 SN=6 NR=15) PARALLEL
QM=2 MR=8 SN=3 NR=12) PARALLEL
in 100% sure this is the answer good luck m8
QM=2 MR=5 SN=6 NR=15) PARALLEL
QM=2 MR=8 SN=3 NR=12) PARALLEL
in 100% sure this is the answer good luck m8
Answer:
Thus, (1) is non parallel set and (2) and (3) are parallel set.
Step-by-step explanation:
Consider a triangle with vertices labeled as Q, R, S. Side QS is base. Sides RQ and RS contain midpoints M and N, respectively. A line segment is drawn from M to N as shown in figure below.
For MN and QS to be parallel the ratio of line segment must be in same ratio, that is [tex]\frac{RM}{RQ}=\frac{RN}{RS}[/tex].
Check for the given options,
1) Given : QM=2, MR=4, SN=3, NR=5
Find the values in the ratio,
[tex]\frac{RM}{RQ}=\frac{RM}{RM+MQ}=\frac{4}{6}=\frac{2}{3}[/tex]
[tex]\frac{RN}{RS}=\frac{RN}{RN+NS}=\frac{5}{8}=\frac{5}{8}[/tex]
Thus, [tex]\frac{RM}{RQ}\neq \frac{RN}{RS}[/tex]
Thus, (1) is non parallel set.
2) Given : QM=2, MR=5, SN=6, NR=15
Find the values in the ratio,
[tex]\frac{RM}{RQ}=\frac{RM}{RM+MQ}=\frac{5}{7}[/tex]
[tex]\frac{RN}{RS}=\frac{RN}{RN+NS}=\frac{15}{21}=\frac{5}{7}[/tex]
Thus, [tex]\frac{RM}{RQ}=\frac{RN}{RS}[/tex]
Thus, (2) is parallel set.
3) Given: QM=2, MR=8, SN=3, NR=12
Find the values in the ratio,
[tex]\frac{RM}{RQ}=\frac{RM}{RM+MQ}=\frac{8}{10}=\frac{4}{5}[/tex]
[tex]\frac{RN}{RS}=\frac{RN}{RN+NS}=\frac{12}{15}=\frac{4}{5}[/tex]
Thus, [tex]\frac{RM}{RQ}=\frac{RN}{RS}[/tex]
Thus, (3) is parallel set.