dtyler8
contestada

if f(x)=5x-6 and g(x)=x^2-4x-8, find (f+g)(x)
a. (f+g)(x)=x^2-x-2
b. (f+g)(x)=6x^2-4x-14
c. (f+g)(x)=x^2+x-14
d. (f+g)(x)=x^2-9x-2

Respuesta :

(f+g)(x)= f(x) + g(x) = 5x-6 + x^2-4x-8 = x^2+x-14

Answer:

Option c -[tex](f+g)(x)=x^2+x-14[/tex]  

Step-by-step explanation:

Given : [tex]f(x)=5x-6[/tex] and [tex]g(x)=x^2-4x-8[/tex]        

To find : The value of [tex](f+g)(x)[/tex]?

Solution :

Step 1 - Write the expression in form,

[tex](f+g)(x)=f(x)+g(x)[/tex]    

Step 2 - Substitute the value of f(x) and g(x),

[tex](f+g)(x)=5x-6+x^2-4x-8[/tex]    

Step 3 - Solve by adding like terms,

[tex](f+g)(x)=x^2+x-14[/tex]    

Therefore, The value of the expression is [tex](f+g)(x)=x^2+x-14[/tex]  

So, Option 'c' is correct.