Respuesta :
5 sqrt 13^3=5*(13^3)^(1/2)
5*(13*13^2)^(1/2)
5*13*(13)^(1/2)
65*(13)^(1/2)=65√13
the answer is 65√13
5*(13*13^2)^(1/2)
5*13*(13)^(1/2)
65*(13)^(1/2)=65√13
the answer is 65√13
Answer:
Correct answer is choice D) [tex]\left(13^{\frac{3}{5}}\right)[/tex]
Step-by-step explanation:
Question says to find about which of the following is equivalent to [tex]\sqrt[5]{13^3}[/tex]
From comment sections, given choices are:
a) [tex]13^2[/tex]
b) [tex]13^15[/tex]
c) [tex]13^5/3[/tex]
d) [tex]13^3/5[/tex]
We see that each choice is in exponent form without any radical sign. So that means we also need to convert [tex]\sqrt[5]{13^3}[/tex] into exponent form.
We know that nth root is equivalent to power 1/n. So we can rewrite the given problem as:
[tex]\sqrt[5]{13^3}[/tex]
[tex]=\left(13^3\right)^{\frac{1}{5}}[/tex]
[tex]=\left(13^{3\cdot\frac{1}{5}}\right)[/tex] {using formula [tex]\left(x^m\right)^n=x^{m\cdot n}[/tex]}
[tex]=\left(13^{\frac{3}{5}}\right)[/tex]
Hence correct answer is choice D) [tex]\left(13^{\frac{3}{5}}\right)[/tex].