Respuesta :

−3π/4

radians=degree*(pi/180)
degree=radians*180/pi
degree=-(3
π/4)*180/π=3*180/4=-135°

-135°------------Quadrant II  (90°,180°)

we will define the X and Y Coordinate points on the Unit Circle
X2 + Y2 = r2 (Pythagorean Theorem)
r = Radius of the Circle = Hypotenuse of the Triangle 
135°-90°=45°
For Θ = 45°, we have X = 1*cos45° = √2/2 and Y = 1*sin45° = √2/2

for belonging to 2 quadrant
the X and Y Coordinate points
(-√2/2,√2/2)

Answer:

[tex](-\frac{\sqrt{2} }{2},-\frac{\sqrt{2}}{2})[/tex]

Step-by-step explanation:

The unit circle has the equation [tex]\cos^2\theta+\sin^2\theta=1[/tex].


The terminal side of  [tex]-\frac{3\pi}{4}[/tex] lies in the third quadrant.

In the third quadrant both the sine and the cosine ratios are negative.

The coordinates of the point that corresponds to  [tex]-\frac{3\pi}{4}[/tex] on the unit circle is given by

[tex](-\cos\theta,-\sin\theta)[/tex].


where [tex]\theta[/tex] is the reference angle for [tex]-\frac{3\pi}{4}[/tex] which is [tex]\frac{\pi }{4}[/tex]. See diagram in attachment.


Therefore the coordinates are;

[tex](-\cos(\frac{\pi }{4}),-\sin(\frac{\pi }{4}))[/tex].


[tex](-\frac{\sqrt{2} }{2},-\frac{\sqrt{2} }{2})[/tex]


Ver imagen kudzordzifrancis
RELAXING NOICE
Relax