Respuesta :
−3π/4
radians=degree*(pi/180)
degree=radians*180/pi
degree=-(3π/4)*180/π=3*180/4=-135°
-135°------------Quadrant II (90°,180°)
we will define the X and Y Coordinate points on the Unit Circle
X2 + Y2 = r2 (Pythagorean Theorem)
r = Radius of the Circle = Hypotenuse of the Triangle
135°-90°=45°
For Θ = 45°, we have X = 1*cos45° = √2/2 and Y = 1*sin45° = √2/2
for belonging to 2 quadrant
the X and Y Coordinate points
(-√2/2,√2/2)
radians=degree*(pi/180)
degree=radians*180/pi
degree=-(3π/4)*180/π=3*180/4=-135°
-135°------------Quadrant II (90°,180°)
we will define the X and Y Coordinate points on the Unit Circle
X2 + Y2 = r2 (Pythagorean Theorem)
r = Radius of the Circle = Hypotenuse of the Triangle
135°-90°=45°
For Θ = 45°, we have X = 1*cos45° = √2/2 and Y = 1*sin45° = √2/2
for belonging to 2 quadrant
the X and Y Coordinate points
(-√2/2,√2/2)
Answer:
[tex](-\frac{\sqrt{2} }{2},-\frac{\sqrt{2}}{2})[/tex]
Step-by-step explanation:
The unit circle has the equation [tex]\cos^2\theta+\sin^2\theta=1[/tex].
The terminal side of [tex]-\frac{3\pi}{4}[/tex] lies in the third quadrant.
In the third quadrant both the sine and the cosine ratios are negative.
The coordinates of the point that corresponds to [tex]-\frac{3\pi}{4}[/tex] on the unit circle is given by
[tex](-\cos\theta,-\sin\theta)[/tex].
where [tex]\theta[/tex] is the reference angle for [tex]-\frac{3\pi}{4}[/tex] which is [tex]\frac{\pi }{4}[/tex]. See diagram in attachment.
Therefore the coordinates are;
[tex](-\cos(\frac{\pi }{4}),-\sin(\frac{\pi }{4}))[/tex].
[tex](-\frac{\sqrt{2} }{2},-\frac{\sqrt{2} }{2})[/tex]

