Taking [tex]y=y(x)[/tex] and differentiating both sides with respect to [tex]x[/tex] yields
[tex]\dfrac{\mathrm d}{\mathrm dx}\bigg[3x^2+y^2\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[7\bigg]\implies 6x+2y\dfrac{\mathrm dy}{\mathrm dx}=0[/tex]
Solving for the first derivative, we have
[tex]\dfrac{\mathrm dy}{\mathrm dx}=-\dfrac{3x}y[/tex]
Differentiating again gives
[tex]\dfrac{\mathrm d}{\mathrm dx}\bigg[6x+2y\dfrac{\mathrm dy}{\mathrm dx}\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[0\bigg]\implies 6+2\left(\dfrac{\mathrm dy}{\mathrm dx}\right)^2+2y\dfrac{\mathrm d^2y}{\mathrm dx^2}=0[/tex]
Solving for the second derivative, we have
[tex]\dfrac{\mathrm d^2y}{\mathrm dx^2}=-\dfrac{3+\left(\frac{\mathrm dy}{\mathrm dx}\right)^2}y=-\dfrac{3+\frac{9x^2}{y^2}}y=-\dfrac{3y^2+9x^2}{y^3}[/tex]
Now, when [tex]x=1[/tex] and [tex]y=2[/tex], we have
[tex]\dfrac{\mathrm d^2y}{\mathrm dx^2}\bigg|_{x=1,y=2}=-\dfrac{3\cdot2^2+9\cdot1^2}{2^3}=\dfrac{21}8\approx2.63[/tex]