Respuesta :
Answer:[tex]\int 7x^{2} ln(x) dx \\= ln(x) ( \frac{7x^{3}}{3})-\int( \frac{7x^{3}}{3}) \frac{1}{x} dx \\= \frac{7x^{3}}{3} ln(x)- \frac{7}{3} \int x^{2} dx \\= \frac{7x^{3}}{3}ln(x)- \frac{7x^{3}}{9} +c\\= \frac{7x^{3}}{3}(ln(x)- \frac{1}{3} )+c [/tex]
Answer: [tex] \frac{7x^{3}}{3}(ln(x)- \frac{1}{3})+c [/tex]
Answer:
[tex]\displaystyle \int {7x^2 \ln x} \, dx = \frac{7x^3}{3} \bigg( \ln(x) - \frac{1}{3} \bigg) + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {7x^2 \ln x} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {7x^2 \ln x} \, dx = 7 \int {x^2 \ln x} \, dx[/tex]
Step 3: Integrate Pt. 2
Identify variables for integration by parts using LIPET.
- Set u: [tex]\displaystyle u = \ln x[/tex]
- [u] Logarithmic Differentiation: [tex]\displaystyle du = \frac{1}{x} \ dx[/tex]
- Set dv: [tex]\displaystyle dv = x^2[/tex]
- [dv] Integration Rule [Reverse Power Rule]: [tex]\displaystyle v = \frac{x^3}{3}[/tex]
Step 4: Integrate Pt. 3
- [Integral] Integration by Parts: [tex]\displaystyle \int {7x^2 \ln x} \, dx = 7 \bigg( \frac{x^3 \ln(x)}{3} - \int {\frac{x^2}{3}} \, dx \bigg)[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {7x^2 \ln x} \, dx = 7 \bigg( \frac{x^3 \ln(x)}{3} - \frac{1}{3} \int {x^2} \, dx \bigg)[/tex]
- Factor: [tex]\displaystyle \int {7x^2 \ln x} \, dx = \frac{7}{3} \bigg( x^3 \ln(x) - \int {x^2} \, dx \bigg)[/tex]
- [Integral] Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {7x^2 \ln x} \, dx = \frac{7}{3} \bigg( x^3 \ln(x) - \frac{x^3}{3} \bigg) + C[/tex]
- Factor: [tex]\displaystyle \int {7x^2 \ln x} \, dx = \frac{7x^3}{3} \bigg( \ln(x) - \frac{1}{3} \bigg) + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration