Respuesta :

W0lf93
$22,053.13  
For this problem, I will make the following assumptions 
1. You make 1 yearly deposit instead of breaking it down into 12 monthly deposits. 
2. The deposit of $2000 occurs at the end of each year.  
The formula for regular deposits is 
FV = PMT * (((1 + r/n)^(nt) - 1) / (r/n))
 where
 FV = Future value
 PMT = Payment per period
 r = interest rate
 n = number of periods per year
 t = number of years 
 So let's plug in the values and calculate
 FV = PMT * (((1 + r/n)^(nt) - 1) / (r/n))
 FV = 2000 * (((1 + 0.05/1)^(1*9) - 1) / (0.05/1))
 FV = 2000 * ((1.05^9 - 1)/0.05)
 FV = 2000 * ((1.551328216 - 1)/0.05)
 FV = 2000 * (0.551328216/0.05)
 FV = 2000 * 11.02656432
 FV = 22053.12864 
 Rounding to 2 decimal places gives 22053.13
ACCESS MORE
EDU ACCESS