Given the functions m(x) = 4x − 11 and n(x) = x − 10, solve m[n(x)] and select the correct answer below. m[n(x)] = 4x − 51 m[n(x)] = 4x − 29 m[n(x)] = 4x2− 51 m[n(x)] = 4x2 − 29

Respuesta :

m(x) = 4x - 11
m(x) = 4( x ) - 11
m[ x ] = 4( x ) - 11
m[ n(x) ] = 4( n(x) ) - 11 ... replace every x with n(x)
m[ n(x) ] = 4( x-10) - 11 ... replace n(x) on the right side with x-10
m[ n(x) ] = 4x - 40 - 11
m[ n(x) ] = 4x - 51

Answer: 4x-51
ACCESS MORE
EDU ACCESS