Respuesta :
I think the question is to evaluate the logarithm of 25 on basis 2.
This is:
[tex]log_5 25=log_5(5^2)=2log_55=2(1)=2[/tex]
I used these propertites:
[tex]1)log_b(a^n)=nlog_ba 2)log_aa=1[/tex]
Answer: 2
This is:
[tex]log_5 25=log_5(5^2)=2log_55=2(1)=2[/tex]
I used these propertites:
[tex]1)log_b(a^n)=nlog_ba 2)log_aa=1[/tex]
Answer: 2
Answer:
[tex]log_{5}(25)[/tex] =1.
Step-by-step explanation:
Given : [tex]log_{5}(25)[/tex].
To find : Evaluate the logarithm.
Solution : We have given [tex]log_{5}(25)[/tex].
We can write the 25 as [tex]5^{2}[/tex].
Then [tex]log_{5}(5^{2})[/tex].
By the logarithm rule :
(i)[tex]log_{x}(x^{n})[/tex] = [tex]nlog_{x}(x)[/tex].
(ii) [tex]log_{x}(x)[/tex] = 1.
Here x = 5 , n= 2.
[tex]log_{5}(5^{2})[/tex] = [tex]2log_{5}(5)[/tex].
[tex]2log_{5}(5)[/tex]
[tex]log_{5}(5)[/tex] = 1.
2* 1 = 2.
Therefore, [tex]log_{5}(25)[/tex] =1.