Respuesta :

I think the question is to evaluate the logarithm of 25 on basis 2.

This is:

[tex]log_5 25=log_5(5^2)=2log_55=2(1)=2[/tex]

I used these propertites:

[tex]1)log_b(a^n)=nlog_ba 2)log_aa=1[/tex]

Answer: 2

Answer:

[tex]log_{5}(25)[/tex] =1.

Step-by-step explanation:

Given  : [tex]log_{5}(25)[/tex].

To find : Evaluate the logarithm.

Solution : We have given  [tex]log_{5}(25)[/tex].

We can write the 25 as [tex]5^{2}[/tex].

Then [tex]log_{5}(5^{2})[/tex].

By the logarithm rule :

(i)[tex]log_{x}(x^{n})[/tex] =  [tex]nlog_{x}(x)[/tex].

(ii) [tex]log_{x}(x)[/tex] =  1.

Here x = 5 , n=  2.

[tex]log_{5}(5^{2})[/tex] = [tex]2log_{5}(5)[/tex].

[tex]2log_{5}(5)[/tex]

[tex]log_{5}(5)[/tex] = 1.

2* 1 = 2.

Therefore,  [tex]log_{5}(25)[/tex] =1.

ACCESS MORE