Respuesta :
You haven't shared the figure mentioned. However, we can still solve this problem.
If you have a 30-60-90 triangle, then the sides opposite these angles have basic lengths 1, sqrt(3) and 2. In other words, the side with length 2 is the hypotenuse and is opposite the right angle (90 deg).
Let's apply the Law of Sines:
a b c
------- = --------- = -----------
sin A sin B sin C
If a = 41 ft is opposite the 30 degre angle, then
41 ft x
---------- = -----------
sin 30 sin 60
Then x(sin 30) = (41 ft)(sin 60), or
41sqrt(3)
x = --------------- = 82sqrt(3)
0.5
The hypotenuse could be found using a similar approach:
41 ft x
---------- = -----------
sin 30 sin 90
In this case x will represent the length of the hypotenuse.
If you have a 30-60-90 triangle, then the sides opposite these angles have basic lengths 1, sqrt(3) and 2. In other words, the side with length 2 is the hypotenuse and is opposite the right angle (90 deg).
Let's apply the Law of Sines:
a b c
------- = --------- = -----------
sin A sin B sin C
If a = 41 ft is opposite the 30 degre angle, then
41 ft x
---------- = -----------
sin 30 sin 60
Then x(sin 30) = (41 ft)(sin 60), or
41sqrt(3)
x = --------------- = 82sqrt(3)
0.5
The hypotenuse could be found using a similar approach:
41 ft x
---------- = -----------
sin 30 sin 90
In this case x will represent the length of the hypotenuse.
Answer:
a. 41√3 unit
b. 82 unit
Step-by-step explanation:
Let ABC is a triangle,
In which m∠B = 90°,
m∠A= 30°, m∠C = 60°,
Also, BC = 41 feet,
a. By the law of sine,
[tex]\frac{sin A}{BC}=\frac{sin C}{BA}[/tex]
By substituting the value,
[tex]\frac{sin 30^{\circ}}{41}=\frac{sin 60^{\circ}}{BA}[/tex]
[tex]\frac{1}{82}=\frac{\sqrt{3}}{2BA}[/tex]
[tex]\implies BA=\frac{82\sqrt{3}}{2}=41\sqrt{3}\text{ unit}[/tex]
b. AC is the hypotenuse of the triangle ABC,
By the pythagoras theorem,
[tex]AC=\sqrt{BC^2+BA^2}=\sqrt{41^2+(41\sqrt{3})^2}=\sqrt{1681+5043}=82\text{ unit}[/tex]
