HELP!!!


In right triangle ABC, AB=6, BC=12, and angle A=90 degrees. What is the value of cot C?
A.) radical sign3
B.) radical sign3/3
C.)radical sign3/2
D.) 2radical sign3/3

Respuesta :

The answer is A. Radical sign 3.

In the right triangle ABC, right angled at A.

AB=6 , BC=12.

We have to find the value of Cot C.

In the right triangle ABC,

By using the Pythagoras theorem, which states

[tex] (BC)^{2}=(AB)^{2}+(AC)^{2} [/tex]

[tex] (12)^{2}=(6)^{2}+(AC)^{2} [/tex]

[tex] (AC)^{2}=108 [/tex]

[tex] (AC)=\sqrt{108} [/tex]

[tex] AC = 6\sqrt{3} [/tex]

Now, we will determine the value of Cot C.

Since, [tex] \cot \Theta =\frac{Base}{Perpendicular} [/tex]

[tex] \cot C =\frac{AC}{AB} [/tex]

[tex] \cot C =\frac{6\sqrt{3}}{6} [/tex]

[tex] \cot C =\sqrt{3}} [/tex]

So, the value of Cot C is radical sign 3.

So, Option A is the correct answer.

ACCESS MORE