Respuesta :
In the right triangle ABC, right angled at A.
AB=6 , BC=12.
We have to find the value of Cot C.
In the right triangle ABC,
By using the Pythagoras theorem, which states
[tex] (BC)^{2}=(AB)^{2}+(AC)^{2} [/tex]
[tex] (12)^{2}=(6)^{2}+(AC)^{2} [/tex]
[tex] (AC)^{2}=108 [/tex]
[tex] (AC)=\sqrt{108} [/tex]
[tex] AC = 6\sqrt{3} [/tex]
Now, we will determine the value of Cot C.
Since, [tex] \cot \Theta =\frac{Base}{Perpendicular} [/tex]
[tex] \cot C =\frac{AC}{AB} [/tex]
[tex] \cot C =\frac{6\sqrt{3}}{6} [/tex]
[tex] \cot C =\sqrt{3}} [/tex]
So, the value of Cot C is radical sign 3.
So, Option A is the correct answer.