The law of cosines is a^2+b^2-2abcosC=c^2. Find the value of 2abcosC.

Answer:
(D)[tex]7=2abcosC[/tex]
Step-by-step explanation:
It is given from figure that c=1, a=2 and b=2, thus using the law of cosines, we get
[tex]c^2=a^2+b^2-2abcosC[/tex]
Substituting the given values, we get
[tex](1)^2=(2)^2+(2)^2-2abcosC[/tex]
[tex]1=4+4-2abcosC[/tex]
[tex]1=8-2abcosC[/tex]
[tex]1-8=-2abcosC[/tex]
[tex]-7=-2abcosc[/tex]
[tex]7=2abcosC[/tex]
Thus, the value of [tex]2abcosC[/tex] is [tex]7[/tex].
Hence, option (D) is correct.