Answer:
[tex]log_{6}(25)=1.796[/tex]
Step-by-step explanation:
We have to find the value of [tex]log_{6}(25)[/tex]
[tex]log_{6}(25)=\frac{log_{10}25}{log_{10}6}[/tex]
[Since [tex]log_{b}a=\frac{log_{10}a}{log_{10}b}[/tex]]
[tex]log_{6}(25)=\frac{1.39794}{0.77818}[/tex]
[tex]log_{6}(25)=1.796[/tex]
Therefore, [tex]log_{6}(25)=1.796[/tex] will be the answer.