Let x = greater number
y = smaller number
(1) [tex]x = y + 6
[/tex]
(1) [tex]y = x-6[/tex]
(2) [tex] x^{2} + y^{2} = 90[/tex]
We'll substitute y in (1) to (2)
(2) [tex] x^{2} + (x-6)^{2} = 90[/tex]
[tex] x^{2} + (x^{2} - 12x + 36) = 90[/tex]
[tex]x^2 + x^2 -12x + 36 - 90 = 0[/tex]
[tex]2x^2 - 12x -54 = 0
[/tex]
[tex]2(x^2 - 6x - 27) = 0[/tex]
[tex]2(x - 9)(x + 3) = 0[/tex]
x - 9 = 0 or x + 3 = 0
x = 9 x = -3
and
y = x - 6 y = x - 6
y = 9 - 6 y = -3 - 6
y = 3 y = -9
Therefore, the two numbers can be 9 and 3 or -3 and -9.