Respuesta :
Answer:
The answer is 1.0 cm.
Step-by-step explanation:
The volume of the object is:
[tex]V=\frac{m}{d}.[/tex]
Where [tex]m[/tex] is mass of the object, and [tex]d[/tex] is its density.
Now for the spherical grape [tex]m=8.4[/tex] grams and [tex]d=2\frac{grams}{cm^3}[/tex].
Therefore:
[tex]V=\frac{m}{d}=\frac{8.4grams}{2\frac{grams}{cm^3}}=4.2\:cm^3.[/tex]
Now since the grape is spherical, its volume is given by:
[tex]V=\frac{4}{3} \pi r^3[/tex]
[tex]\therefore r=\sqrt[3]{\frac{3V}{4\pi} }[/tex]
Substituting [tex]V=4.2cm^3[/tex] we get:
[tex]r=\sqrt[3]{\frac{3(4.2cm^3)}{4\pi} }=1.000891253\:cm,[/tex]
which to the nearest tenth of a centimeter is 1.0 cm, and therefore the radius of the grape is 1.0 cm.