Answer:
[tex]\text{The product is }a^3+3a^2+3a+1[/tex]
Step-by-step explanation:
[tex]\text{Given the expression }(a^2 + 2a + 1)(a + 1)[/tex]
we have to find the product.
[tex](a^2 + 2a + 1)(a + 1)[/tex]
Opening the brackets
[tex]a^2(a+1)+2a(a+1)+1(a+1)[/tex]
Using distributive property, a.(b+c)=a.b+a.c
[tex](a^3+a^2)+(2a^2+2a)+(a+1)[/tex]
Combining like terms
[tex]a^3+(a^2+2a^2)+(2a+a)+1[/tex]
[tex]a^3+3a^2+3a+1[/tex]
which is required polynomial.
Option 2 is correct.