Respuesta :

(a2 + 2a + 1)(a + 1)

= a^3 + 2a^2 + a + a^2 + 2a + 1

= a^3 + 3a^2 + 3a + 1

Answer:

[tex]\text{The product is }a^3+3a^2+3a+1[/tex]

Step-by-step explanation:

[tex]\text{Given the expression }(a^2 + 2a + 1)(a + 1)[/tex]

we have to find the product.

[tex](a^2 + 2a + 1)(a + 1)[/tex]

Opening the brackets

[tex]a^2(a+1)+2a(a+1)+1(a+1)[/tex]

Using distributive property, a.(b+c)=a.b+a.c

[tex](a^3+a^2)+(2a^2+2a)+(a+1)[/tex]

Combining like terms

[tex]a^3+(a^2+2a^2)+(2a+a)+1[/tex]

[tex]a^3+3a^2+3a+1[/tex]

which is required polynomial.

Option 2 is correct.