Which three lengths could be the lengths of the sides of a triangle?
A) 6 cm, 23 cm, 11 cm
B) 10 cm, 15 cm, 24 cm
C) 22 cm, 6 cm, 6 cm
D) 15 cm, 9 cm, 24 cm

Respuesta :

D
the answer is D because it is equilateral triangle

Answer:

B. [tex]10[/tex] cm, [tex]15[/tex] cm, [tex]24[/tex] cm

Step-by-step explanation:

we know that

The Triangle Inequality Theorem, states that the sum of the lengths of two sides of a triangle must always be greater than the length of the third side

so

[tex]a+b > c[/tex]

[tex]a+c > b[/tex]

[tex]b+c >a[/tex]

where

a,b,c are the lengths sides of the triangle

case A)  [tex]6[/tex] cm, [tex]23[/tex] cm, [tex]11[/tex] cm

Let

[tex]a=6\ cm[/tex]

[tex]b=23\ cm[/tex]

[tex]c=11\ cm[/tex]

Verify

[tex]a+b > c[/tex] ------> [tex]6+23 > 11[/tex] ------> is true

[tex]a+c > b[/tex] ------> [tex]6+11 > 23[/tex] -------> is not true

therefore

The three lengths of case A) could not be the lengths of the sides of a triangle

case B)  [tex]10[/tex] cm, [tex]15[/tex] cm, [tex]24[/tex] cm

Let

[tex]a=10\ cm[/tex]

[tex]b=15\ cm[/tex]

[tex]c=24\ cm[/tex]

Verify

[tex]a+b > c[/tex] ------> [tex]10+15 > 24[/tex] ------> is true

[tex]a+c > b[/tex] ------> [tex]10+24 > 15[/tex] -------> is true

[tex]b+c >a[/tex] -----> [tex]15+24 >10[/tex] --------> is true

therefore

The three lengths of case B) could be the lengths of the sides of a triangle

case C)  [tex]22[/tex] cm, [tex]6[/tex] cm, [tex]6[/tex] cm

Let

[tex]a=22\ cm[/tex]

[tex]b=6\ cm[/tex]

[tex]c=6\ cm[/tex]

Verify

[tex]a+b > c[/tex] ------> [tex]22+6 > 6[/tex] ------> is true

[tex]a+c > b[/tex] ------> [tex]22+6> 6[/tex] -------> is true

[tex]b+c >a[/tex] -----> [tex]6+6 >22[/tex] --------> is not true

therefore

The three lengths of case C) could not be the lengths of the sides of a triangle

case D)  [tex]15[/tex] cm, [tex]9[/tex] cm, [tex]24[/tex] cm

Let

[tex]a=15\ cm[/tex]

[tex]b=9\ cm[/tex]

[tex]c=24\ cm[/tex]

Verify

[tex]a+b > c[/tex] ------> [tex]15+9 > 24[/tex] ------> is not true

therefore

The three lengths of case D) could not be the lengths of the sides of a triangle