Respuesta :

(x+3) (x-4i) (x+4i) is the answer, just took the quiz :)

The complete factorization of the given polynomial function is [tex]f(x)=(x+2i)(x-2i)(x+3)[/tex].

Given:

The given polynomial function is [tex]f(x)=x^3+3x^2+16x+48[/tex].

To find:

The complete factorization of the given polynomial function.

Explanation:

We have,

[tex]f(x)=x^3+3x^2+16x+48[/tex]

By grouping, we get

[tex]f(x)=(x^3+3x^2)+(16x+48)[/tex]

[tex]f(x)=x^2(x+3)+16(x+3)[/tex]

[tex]f(x)=(x^2+16)(x+3)[/tex]

It can be written as:

[tex]f(x)=(x^2+4^2)(x+3)[/tex]

[tex]f(x)=(x+2i)(x-2i)(x+3)[/tex]              [tex][\because a^2+b^2=(a+bi)(a-bi)][/tex]

Therefore, the complete factorization of the given polynomial function is [tex]f(x)=(x+2i)(x-2i)(x+3)[/tex].

Learn more:

https://brainly.com/question/2463360