Respuesta :
The complete factorization of the given polynomial function is [tex]f(x)=(x+2i)(x-2i)(x+3)[/tex].
Given:
The given polynomial function is [tex]f(x)=x^3+3x^2+16x+48[/tex].
To find:
The complete factorization of the given polynomial function.
Explanation:
We have,
[tex]f(x)=x^3+3x^2+16x+48[/tex]
By grouping, we get
[tex]f(x)=(x^3+3x^2)+(16x+48)[/tex]
[tex]f(x)=x^2(x+3)+16(x+3)[/tex]
[tex]f(x)=(x^2+16)(x+3)[/tex]
It can be written as:
[tex]f(x)=(x^2+4^2)(x+3)[/tex]
[tex]f(x)=(x+2i)(x-2i)(x+3)[/tex] [tex][\because a^2+b^2=(a+bi)(a-bi)][/tex]
Therefore, the complete factorization of the given polynomial function is [tex]f(x)=(x+2i)(x-2i)(x+3)[/tex].
Learn more:
https://brainly.com/question/2463360