Find the following measures for this figure.
Lateral Area = 55 square units 5√(47) square units 5√(146) square units
Volume = 275 cubic units 91 2/3 cubic units 36 2/3 cubic units

Find the following measures for this figure Lateral Area 55 square units 547 square units 5146 square units Volume 275 cubic units 91 23 cubic units 36 23 cubic class=

Respuesta :

1. We can find lateral area of a cone by [tex]\text{Lateral area}=\pi*r*l[/tex], where r equals radius of cone and l equals slant height of cone.

We can find slant height of our cone using Pythagorean theorem.

[tex]l=\sqrt{11^{2}+5^{2}}[/tex]

[tex]l=\sqrt{121+25}[/tex]

[tex]l=\sqrt{146}[/tex]

Let us substitute our slant height in lateral area formula.

[tex]\text{Lateral area}=\pi*5\sqrt{146}[/tex]

Therefore, our lateral area will be [tex]\pi*5\sqrt{146}[/tex] square units.

2. [tex]\text{Volume of cone}=\frac{1}{3} \cdot\pi\cdot r^{2}\cdot h[/tex]

Upon substituting our given values in volume formula we will get,

[tex]\text{Volume of cone}=\frac{1}{3} \cdot\pi\cdot 5^{2}\cdot 11[/tex]

[tex]\text{Volume of cone}=\frac{1}{3} \cdot\pi \cdot 25\cdot 11[/tex]

[tex]\text{Volume of cone}=\frac{275}{3} \cdot\pi[/tex]

[tex]\text{Volume of cone}=91\frac{2}{3} \cdot\pi[/tex]

Therefore, volume of our cone will be [tex]91\frac{2}{3} \cdot\pi[/tex] cubic units.