Respuesta :
Given: Velocity of satellite Vsat = 6.9 Km/s convert to m/s Vsat = 6900 m/s
Radius of Earth re = 6,370 Km; Mass of Earth Me = 5.98 x 10²⁴ Kg
Universal Gravitational constant G = 6.67 x 10⁻¹¹ N.m²/Kg²
Required: Altitude of satellite r = ?
Formulas. F = ma; a = V²/r F = GMeMsat/r²
Equate for "r " from the three equations
GMeMsat/r² = MsatV²/r
r = GMe/V²
r = (6.67 x 10⁻¹¹ N.m²/Kg²)(5.98 x 10²⁴ Kg)/6,900 m/s)²
r = 8,379,537.82 m or 8,379.53 Km
Deduct the the radius of our planet to find the altitude of the satellite
r = rsat - re
r = 8, 379.59 Km - 6,370 Km
r = 2009.59 km or
r = 2010 Km altitude above the earth.
Radius of Earth re = 6,370 Km; Mass of Earth Me = 5.98 x 10²⁴ Kg
Universal Gravitational constant G = 6.67 x 10⁻¹¹ N.m²/Kg²
Required: Altitude of satellite r = ?
Formulas. F = ma; a = V²/r F = GMeMsat/r²
Equate for "r " from the three equations
GMeMsat/r² = MsatV²/r
r = GMe/V²
r = (6.67 x 10⁻¹¹ N.m²/Kg²)(5.98 x 10²⁴ Kg)/6,900 m/s)²
r = 8,379,537.82 m or 8,379.53 Km
Deduct the the radius of our planet to find the altitude of the satellite
r = rsat - re
r = 8, 379.59 Km - 6,370 Km
r = 2009.59 km or
r = 2010 Km altitude above the earth.
The altitude of the satellite above the surface of the Earth is 1,528.48 km.
The given parameters;
- speed of the satellite, v = 6.9 km/s
- radius of the Earth, R = 6370 km
- mass of the Earth of the, m = 5.98 x 10²⁴ kg
- gravitational constant, G = 6.67259 x 10⁻¹¹ Nm²/kg²
The altitude of the satellite above the surface of the Earth is calculated as follows;
[tex]F = \frac{mv^2}{r} = \frac{GmM}{R^2} \\\\\frac{v^2}{r} = \frac{GM}{R^2} \\\\r = \frac{v^2 R^2}{GM} \\\\r = \frac{(6900)^2 \times (6,370,000)^2}{(6.67259\times 10^{-11}) \times (5.98\times 10^{24})} \\\\r = 4,841,516.6 \ m\\\\r = 4,841.52 \ km[/tex]
The altitude of the satellite = 6370 km - 4,841.52 km = 1,528.48 km
Thus, the altitude of the satellite above the surface of the Earth is 1,528.48 km.
Learn more here:https://brainly.com/question/14659037