PLEASE HELP WILL GIVE BRAILIEST AND 10 POINTS
Point A is located at (5, 4) and point B is located at (10, 12).

What point partitions the directed line segment ​ AB¯¯¯¯¯ ​ into 3:1 ratio?




(614, 6)

(834, 10)

(8, 5)

(7, 11)

Respuesta :

Answer:

[tex]\text{Partition point at }\left(8\frac{3}{4},10\right)[/tex]

B is correct.

Step-by-step explanation:

We are given point A(5,4) and point B(10,12).

We need to find point which divides line segment AB into 3:1

Using section formula of coordinate system to find coordinate

Formula:

[tex](x,y)\rightarrow \left(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n}\right)[/tex]

where,

[tex]A(x_1,y_1)\rightarrow (5,4)[/tex]

[tex]B(x_2,y_2)\rightarrow (10,12)[/tex]

[tex]m:n\rightarrow 3:1[/tex]

Substitute into formula and find out partition point,

[tex]\text{Point: }\left(\frac{3\cdot 10+1\cdot 5}{3+1},\frac{3\cdot 12+1\cdot 4}{3+1}\right)[/tex]

[tex]\text{Point: }\left(\frac{35}{4},\frac{40}{4}\right)[/tex]

[tex]\text{Point: }\left(8\frac{3}{4},10\right)[/tex]

[tex]\text{Thus, Partition point at }\left(8\frac{3}{4},10\right)[/tex]

Answer:

(8 3/4, 10)

Step-by-step explanation:

I took the quiz. I hope this helps :)

Ver imagen LindsayCharlotte06