A sequence is defined by the recursive formula f(n + 1) = 1.5f(n). Which sequence could be generated using the formula?


–12, –18, –27, ...

–20, 30, –45, ...

–18, –16.5, –15, ...

–16, –17.5, –19, ...

Respuesta :

We're analyzing each case to determine the solution.

we know that the sequence's formula is

[tex]f(n + 1) = 1.5f(n)[/tex]

case a)

we have the sequence

[tex]-12,-18,-27,...[/tex]

Let

[tex]f(1)=-12[/tex]

with the formula find the value of [tex]f(2)[/tex] and [tex]f(3)[/tex] and compare

Find the value of [tex]f(2)[/tex]

[tex]n=1[/tex]

[tex]f(1 + 1) = 1.5f(1)[/tex]

[tex]f(2) = 1.5*(-12)=-18[/tex]

Find the value of [tex]f(3)[/tex]

[tex]n=2[/tex]

[tex]f(2 + 1) = 1.5f(2)[/tex]

[tex]f(3) = 1.5*(-18)=-27[/tex]

therefore

The sequence case a) could be generated using the formula

case b)

we have the sequence

[tex]-20,30,-45,...[/tex]

Let

[tex]f(1)=-20[/tex]

with the formula find the value of [tex]f(2)[/tex] and [tex]f(3)[/tex] and compare

Find the value of [tex]f(2)[/tex]

[tex]n=1[/tex]

[tex]f(1 + 1) = 1.5f(1)[/tex]

[tex]f(2) = 1.5*(-20)=-30[/tex]

Find the value of [tex]f(3)[/tex]

[tex]n=2[/tex]

[tex]f(2 + 1) = 1.5f(2)[/tex]

[tex]f(3) = 1.5*(-30)=-45[/tex]

therefore

The sequence case b) could not be generated using the formula

case c)

we have the sequence

[tex]-18,-16.5,-15,...[/tex]

Let

[tex]f(1)=-18[/tex]

with the formula find the value of [tex]f(2)[/tex] and [tex]f(3)[/tex] and compare

Find the value of [tex]f(2)[/tex]

[tex]n=1[/tex]

[tex]f(1 + 1) = 1.5f(1)[/tex]

[tex]f(2) = 1.5*(-18)=-27[/tex]

Find the value of [tex]f(3)[/tex]

[tex]n=2[/tex]

[tex]f(2 + 1) = 1.5f(2)[/tex]

[tex]f(3) = 1.5*(-27)=-40.5[/tex]

therefore

The sequence case c) could not be generated using the formula

case d)

we have the sequence

[tex]-16,-17.5,-19,...[/tex]

Let

[tex]f(1)=-16[/tex]

with the formula find the value of [tex]f(2)[/tex] and [tex]f(3)[/tex] and compare

Find the value of [tex]f(2)[/tex]

[tex]n=1[/tex]

[tex]f(1 + 1) = 1.5f(1)[/tex]

[tex]f(2) = 1.5*(-16)=-24[/tex]

Find the value of [tex]f(3)[/tex]

[tex]n=2[/tex]

[tex]f(2 + 1) = 1.5f(2)[/tex]

[tex]f(3) = 1.5*(-24)=-36[/tex]

therefore

The sequence case d) could not be generated using the formula

therefore

the answer is

The sequence case a) could be generated using the formula

[tex]-12,-18,-27,...[/tex]

Answer:

Answer is A. –12, –18, –27, ...

Step-by-step explanation: