Respuesta :
2x²+3x+8=0
this cannot be factored, so use the quadratic formula to solve:
x=[-b+√(b²-4ac)]/(2a) or x=[-b-√(b²-4ac)]/(2a), a=2, b=3, c=8 in this case
3²-4*2*8=-55
the answer is b.
this cannot be factored, so use the quadratic formula to solve:
x=[-b+√(b²-4ac)]/(2a) or x=[-b-√(b²-4ac)]/(2a), a=2, b=3, c=8 in this case
3²-4*2*8=-55
the answer is b.
Answer:
Option b - [tex]x=\frac{-3\pm\sqrt{55}i}{4}[/tex]
Step-by-step explanation:
Given : Equation [tex]2x^2+3x=-8[/tex]
To find : What are the solutions of equation ?
Solution :
Re-write the equation as,
[tex]2x^2+3x+8=0[/tex]
Solving by quadratic formula, [tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
Here, a=2, b=3 and c=8
[tex]x=\frac{-3\pm\sqrt{3^2-4(2)(8)}}{2(2)}[/tex]
[tex]x=\frac{-3\pm\sqrt{9-64}}{4}[/tex]
[tex]x=\frac{-3\pm\sqrt{-55}}{4}[/tex]
[tex]x=\frac{-3\pm\sqrt{55}i}{4}[/tex]
Therefore, the solution is [tex]x=\frac{-3\pm\sqrt{55}i}{4}[/tex]
So, option b is correct.
