Respuesta :

Answer is the first option
Ver imagen snehayendluri

Answer:

Option A is correct

The only expressions that is equivalent to [tex]\frac{m-4}{m+4} \div (m+2)[/tex] is, [tex]\frac{(m-4)}{(m+4)(m+2)}[/tex]

Step-by-step explanation:

[tex]\frac{m-4}{m+4} \div (m+2)[/tex]

here, Dividend= [tex]\frac{m-4}{m+4}[/tex] and divsior is: (m+2)

Dividend states that the total number/expression which we are dividing ,

Divisor states that the number by which the dividend is being divided.

Use: [tex]a \div b = \frac{a}{b}[/tex]

Here, a = [tex]\frac{m-4}{m+4}[/tex] and b= (m+2)

then,

[tex]\frac{m-4}{m+4} \div (m+2)[/tex] = [tex]\frac{(m-4)}{(m+4)\cdot(m+2)}[/tex]

Therefore, the only expressions which is equivalent to [tex]\frac{m-4}{m+4} \div (m+2)[/tex] is, [tex]\frac{(m-4)}{(m+4)(m+2)}[/tex]

ACCESS MORE