In equilateral ∆ABC length of the side is a. Perpendicular to side AB at point B intersects extension of median in point P. What is the perimeter of ∆ABP, if MP = b?

Solution:
In equilateral triangle ABC ,
You must keep in mind that Median in an equilateral triangle works as a perpendicular bisector.
MB= [tex]\frac{a}{2}[/tex]
In Right Triangle AMB
AM² + MB²=AB² →→→[By Pythagorean Theorem]
AM² = AB²- MB²
AM²= a²- \frac{a^2}{4}[/tex]
AM²=[tex]\frac{\sqrt3}{4} \times a^2[/tex]
AM=[tex]\frac{\sqrt3}{2}\times a[/tex]
Also, MP = b
Again using pythagorean theorem In Right Δ APB
BP²= AP² - AB²
= [tex](\frac{\sqrt{3}a}{2} + b)^2 -a^2\\\\ b^2 + \sqrt{3} a b -\frac{a^2}{4}[/tex]
BP= [tex]\sqrt{ b^2 + \sqrt{3} a b -\frac{a^2}{4}}[/tex]
Perimeter of Triangle ABP = AB + AP + BP
= a +[tex]\frac{\sqrt3}{2}\times a[/tex] +b + [tex]\sqrt{ b^2 + \sqrt{3} a b -\frac{a^2}{4}}[/tex]