In equilateral ∆ABC length of the side is a. Perpendicular to side AB at point B intersects extension of median in point P. What is the perimeter of ∆ABP, if MP = b?

In equilateral ABC length of the side is a Perpendicular to side AB at point B intersects extension of median in point P What is the perimeter of ABP if MP b class=

Respuesta :

The answer is a+6b, if you want to know the proof please comment on this post

Solution:

In equilateral triangle ABC ,

You must keep in mind that Median in an equilateral triangle works as a perpendicular bisector.

MB= [tex]\frac{a}{2}[/tex]

In Right Triangle AMB

AM² + MB²=AB² →→→[By Pythagorean Theorem]

AM² = AB²- MB²

AM²= a²- \frac{a^2}{4}[/tex]

AM²=[tex]\frac{\sqrt3}{4} \times a^2[/tex]

AM=[tex]\frac{\sqrt3}{2}\times a[/tex]

Also, MP = b

Again using pythagorean theorem In Right Δ APB

BP²= AP² - AB²

     = [tex](\frac{\sqrt{3}a}{2} + b)^2 -a^2\\\\ b^2 + \sqrt{3} a b -\frac{a^2}{4}[/tex]

BP= [tex]\sqrt{ b^2 + \sqrt{3} a b -\frac{a^2}{4}}[/tex]

Perimeter of Triangle ABP = AB + AP + BP

                                           = a  +[tex]\frac{\sqrt3}{2}\times a[/tex] +b + [tex]\sqrt{ b^2 + \sqrt{3} a b -\frac{a^2}{4}}[/tex]


ACCESS MORE