we are given
[tex] \frac{(x^2+x-6)}{(x^2-4)}*\frac{(x^2-9)}{(x^2+6x+9)} [/tex]
step-1: Factor terms
[tex] x^2+x-6=(x+3)(x-2) [/tex]
[tex] x^2+6x+9=(x+3)^2 [/tex]
[tex] x^2-4=(x-2)(x+2) [/tex]
now, we can plug these values
and we get
=[tex] \frac{(x+3)(x-2)}{(x-2)(x+2)}*\frac{(x-3)(x+3)}{(x+3)^2} [/tex]
step-2: Cancel common terms
we get
=[tex] \frac{(x+3)}{(x+2)}*\frac{(x-3)}{(x+3)} [/tex]
we can again cancel numerator and denominator
and we get
=[tex] \frac{(x-3)}{(x+2)} [/tex].............Answer