Respuesta :
Answer:
[tex]\displaystyle \int {sin(x)cos(5x)} \, dx = \frac{cos(4x)}{8} - \frac{cos(6x)}{12} + C[/tex]
General Formulas and Concepts:
Algebra I
- Terms/Coefficients
- Expanding/Factoring
Pre-Calculus
Trigonometric Identities
- Product-to-Sum Formula: [tex]\displaystyle sin(x)cos(y) = \frac{sin(y + x) - sin(y - x)}{2}[/tex]
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
U-Substitution
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {sin(x)cos(5x)} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integrand] Rewrite [Product-to-Sum Formula]: [tex]\displaystyle \int {sin(x)cos(5x)} \, dx = \int {\frac{sin(6x) - sin(4x)}{6}} \, dx[/tex]
- [Integrand] Rewrite: [tex]\displaystyle \int {sin(x)cos(5x)} \, dx = \int {\Big( \frac{sin(6x)}{2} - \frac{sin(4x)}{2} \Big)} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int {sin(x)cos(5x)} \, dx = \int {\frac{sin(6x)}{2}} \, dx - \int {\frac{sin(4x)}{2}} \, dx[/tex]
- [Integrals] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {sin(x)cos(5x)} \, dx = \frac{1}{2}\int {sin(6x)} \, dx - \frac{1}{2}\int {sin(4x)} \, dx[/tex]
- Factor: [tex]\displaystyle \int {sin(x)cos(5x)} \, dx = \frac{1}{2} \bigg[ \int {sin(6x)} \, dx - \int {sin(4x)} \, dx \bigg][/tex]
Step 3: integrate Pt. 2
Identify variables for u-substitution.
Integral 1:
- Set u: [tex]\displaystyle u = 6x[/tex]
- [u] Differentiate [Basic Power Rule, Multiplied Constant]: [tex]\displaystyle du = 6 \ dx[/tex]
Integral 2:
- Set z: [tex]\displaystyle z = 4x[/tex]
- [z] Differentiate [Basic Power Rule, Multiplied Constant]: [tex]\displaystyle dz = 4 \ dx[/tex]
Step 4: Integrate Pt. 3
- [Integrals] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {sin(x)cos(5x)} \, dx = \frac{1}{2} \bigg[ \frac{1}{6}\int {6sin(6x)} \, dx - \frac{1}{4}\int {4sin(4x)} \, dx \bigg][/tex]
- [Integrals] U-Substitution: [tex]\displaystyle \int {sin(x)cos(5x)} \, dx = \frac{1}{2} \bigg[ \frac{1}{6}\int {sin(u)} \, du - \frac{1}{4}\int {sin(z)} \, dz \bigg][/tex]
- [Integrals] Trigonometric Integration: [tex]\displaystyle \int {sin(x)cos(5x)} \, dx = \frac{1}{2} \bigg[ \frac{1}{6}[-cos(u)] - \frac{1}{4}[-cos(z)] \bigg] + C[/tex]
- Simplify: [tex]\displaystyle \int {sin(x)cos(5x)} \, dx = \frac{1}{2} \bigg[ \frac{cos(z)}{4} - \frac{cos(u)}{6} \bigg] + C[/tex]
- Expand: [tex]\displaystyle \int {sin(x)cos(5x)} \, dx = \frac{cos(z)}{8} - \frac{cos(u)}{12} + C[/tex]
- Back-Substitute: [tex]\displaystyle \int {sin(x)cos(5x)} \, dx = \frac{cos(4x)}{8} - \frac{cos(6x)}{12} + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration