Note that we can draw the angle [tex]\displaystyle{ 5\frac{ \pi }{4} [/tex] by adding 5 [tex]\frac{ \pi}{4}[/tex]'s, as shown in the picture showing the unit circle.
Let the coordinates of [tex]\displaystyle{ 5\frac{ \pi }{4} [/tex] be (-a, -b) , then its reflection in the first quadrant is the angle [tex]\frac{ \pi}{4}[/tex] (45°) with coordinates (a, b).
We know that [tex]\displaystyle{ a= \frac{ \sqrt{2} }{2}, \ b= \frac{ \sqrt{2} }{2}[/tex], thus the coordinates (-a, -b) which are the cosine and sine of [tex]\displaystyle{ 5\frac{ \pi }{4} [/tex] respectively, are:
[tex]\displaystyle{ a= \frac{ -\sqrt{2} }{2}, \ b= \frac{ -\sqrt{2} }{2}[/tex].
From the identity tan(x)=sin(x)/cos(x), we easily see that the tangent is 1.
Answer:
[tex]\displaystyle{ cos:\frac{ -\sqrt{2} }{2}, \ sin= \frac{ -\sqrt{2} }{2} \ tan: 1[/tex].