For a binomial distribution with p = 0.20 and n = 100, what is the probability of obtaining a score less than or equal to x = 12? hint: use interval-based calculations because no critical region is involved.​

Respuesta :

The binomial distribution is given by, 
P(X=x) =  [tex](^{n}C_{x})p^{x} q^{n-x} [/tex]
q = probability of failure = 1-0.2 = 0.8
n = 100
They have asked to find the probability of obtaining a score less than or equal to 12.
∴ P(X≤12) = [tex](^{100}C_{x})(0.2)^{x} (0.8)^{100-x} [/tex]
                    where, x = 0,1,2,3,4,5,6,7,8,9,10,11,12                  
∴ P(X≤12) = [tex](^{100}C_{0})(0.2)^{0} (0.8)^{100-0} + (^{100}C_{1})(0.2)^{1} (0.8)^{100-1} [/tex] + [tex](^{100}C_{2})(0.2)^{2} (0.8)^{100-2} + (^{100}C_{3})(0.2)^{3} (0.8)^{100-3} [/tex] + [tex](^{100}C_{4})(0.2)^{4} (0.8)^{100-4} + (^{100}C_{5})(0.2)^{5} (0.8)^{100-5}[/tex] + [tex](^{100}C_{6})(0.2)^{6} (0.8)^{100-6} + (^{100}C_{7})(0.2)^{7} (0.8)^{100-7}[/tex] + [tex](^{100}C_{8})(0.2)^{8} (0.8)^{100-8} + (^{100}C_{9})(0.2)^{9} (0.8)^{100-9}[/tex] + [tex](^{100}C_{10})(0.2)^{10} (0.8)^{100-10} + (^{100}C_{11})(0.2)^{11} (0.8)^{100-11}[/tex] + [tex](^{100}C_{12})(0.2)^{12} (0.8)^{100-12}[/tex]


Evaluating each term and adding them you will get,
P(X≤12) = 0.02532833572
This is the required probability. 
ACCESS MORE