Respuesta :
Answer:
The most simplified expression for the given expression is
[tex]2c^{2}d+5dc+6c^{2}d^{2}[/tex]
Step-by-step explanation:
Given : Expression [tex]4c^2d+3dc-2(dc^2+cd)+6c^2d^2[/tex]
To find : What is the most simplified expression?
Solution :
Step 1 - Write the expression
[tex]4c^2d+3dc-2(dc^2+cd)+6c^2d^2[/tex]
Step 2 - Apply distributive property, [tex]a(b+c)=ab+ac[/tex]
[tex]4c^{2}d + 3dc-2dc^{2}+2cd+ 6c^{2}d^{2}[/tex]
Step 3 - Add like terms,
[tex](4c^{2}d -2dc^{2})+ (3dc+2cd) + 6c^{2}d^{2}[/tex]
[tex]2c^{2}d+5dc+6c^{2}d^{2}[/tex]
Therefore, The most simplified expression for the given expression is
[tex]2c^{2}d+5dc+6c^{2}d^{2}[/tex]