Respuesta :

Answer:

 [tex]AB = 7\sqrt{21}\\CB= \sqrt{541}[/tex]

Step-by-step explanation:

 Given:  Δ ABC, CM⊥ AB

    [tex]AC = 10, CM = 4 AM:BM = 2:5[/tex]

Now, consider  [tex]AM:BM = 2:5 = 2x:5x[/tex]

Let In ΔCMA  H=- 10 , P= 4 , B= 2x

By, Pythagoras theorem,  [tex]H^2=P^2+B^2[/tex]

putting values we get, [tex]10^2=4^2+(2x)^2[/tex]

⇒ [tex]100=16+4x^2[/tex]

⇒[tex]x^2= 21[/tex]

⇒[tex]x= \sqrt{21}[/tex]

which gives us [tex]AM = 2x= 2\sqrt{21}[/tex] and  [tex]MB = 5x= 5\sqrt{21}[/tex]

⇒[tex]AB= 2\sqrt{21}+5\sqrt{21}[/tex]

[tex]AB= 7\sqrt{21}[/tex]

Now, Let In ΔCMB  H=- ? , P= 4 , B= 5√21

By, Pythagoras theorem,  [tex]H^2=P^2+B^2[/tex]

putting values we get, [tex]H^2=4^2+(5\sqrt{21})^2[/tex]

⇒ [tex]H^2=16+525[/tex]

⇒[tex]H^2=541 [/tex]

⇒[tex]H= \sqrt{541}[/tex]

[tex]CB= \sqrt{541}[/tex]

Therefore,  [tex]AB = 7\sqrt{21}\\CB= \sqrt{541}[/tex]

ACCESS MORE