Given the relationship 2x2 + y3 =10, with y > 0 and dy, dt = 3 units/min., find the value of dx, dt at the instant x = 1 unit.

Respuesta :

I believe it is -1/9. 

Answer:

[tex]\frac{dx}{dt} = -9[/tex] when [tex]x = 1[/tex]

Step-by-step explanation:

The instant x = 1.

We have to find the value of y at this instant.

We have that:

[tex]2x^{2} + y^{3} = 10[/tex]

[tex]2 + y^{3} = 10[/tex]

[tex]y^{3} = 8[/tex]

[tex]y = 2[/tex]

Now we find the implicit derivative

The derivative of a constant is 0. So:

[tex]4x\frac{dx}{dt} + 3y^{2}\frac{dy}{dt} = 0[/tex]

We have that:

[tex]x = 1, y = 2, \frac{dy}{dt} = 3[/tex]

[tex]4\frac{dx}{dt} + 36 = 0[/tex]

[tex]\frac{dx}{dt} = -9[/tex]

[tex]\frac{dx}{dt} = -9[/tex] when [tex]x = 1[/tex]

ACCESS MORE