Respuesta :
Answer:
[tex]\frac{dx}{dt} = -9[/tex] when [tex]x = 1[/tex]
Step-by-step explanation:
The instant x = 1.
We have to find the value of y at this instant.
We have that:
[tex]2x^{2} + y^{3} = 10[/tex]
[tex]2 + y^{3} = 10[/tex]
[tex]y^{3} = 8[/tex]
[tex]y = 2[/tex]
Now we find the implicit derivative
The derivative of a constant is 0. So:
[tex]4x\frac{dx}{dt} + 3y^{2}\frac{dy}{dt} = 0[/tex]
We have that:
[tex]x = 1, y = 2, \frac{dy}{dt} = 3[/tex]
[tex]4\frac{dx}{dt} + 36 = 0[/tex]
[tex]\frac{dx}{dt} = -9[/tex]
[tex]\frac{dx}{dt} = -9[/tex] when [tex]x = 1[/tex]