Find the exponential function that satisfies the given conditions: Initial value = 70, decreasing at a rate of 0.43% per week

Respuesta :

That'd be y = 70* (1-.00043)^t, where the rate of decrease is really 0.43% and t denotes the # of weeks.  

This simplifies to y = 70*(0.00057)^t. 
                                 

Answer:

[tex]f(t) \ = \ 70 \ * \ e ^ { \ - 0.0043 \frac{1}{week} \ * \ t}[/tex]

Step-by-step explanation:

Exponentials functions are of the form:

[tex]f(t) \ = \ A \ * \ e ^ { \ b \ * \ t}[/tex]

where A and b are constants.

Now, the initial value of the exponential function its

[tex]f(0) \ = \ A \ * \ e ^ { \ b \ * \ 0}[/tex]

[tex]f(0) \ = \ A \ * \ e ^ { \ 0 \ }[/tex]

[tex]f(0) \ = \ A \ [/tex]

If the initial value must be 70, this must means:

[tex]A \ = \ 70[/tex]

So

[tex]f(t) \ = \ 70 \ * \ e ^ { \ b \ * \ t}[/tex]

We also know that it must decrease at a rate of 0.43 %, this mean that after one week we got:

[tex]100 \ \% - 0.43 \ \%  = 99.57 \ \%[/tex]

[tex]f(1 week) \ = \ 70 \ * 0.9957 \ =  \ 70 \ * \ e ^ { \ b \ * \ 1 \ week}[/tex]

This means :

[tex] 0.9957 \ = \ e ^ { \ b \ * \ 1 \ week}[/tex]

[tex] ln ( 0.9957) \ = \ b \ * \ 1 \ week [/tex]

[tex]  \ b \ = \frac{ln ( 0.9957)}{ 1 \ week} [/tex]

[tex]  \ b \ = - 0.0043 \frac{1}{week} [/tex]

So, our equation, finally, its:

[tex]f(t) \ = \ 70 \ * \ e ^ { \ - 0.0043 \frac{1}{week} \ * \ t}[/tex]