Respuesta :
That'd be y = 70* (1-.00043)^t, where the rate of decrease is really 0.43% and t denotes the # of weeks.
This simplifies to y = 70*(0.00057)^t.
This simplifies to y = 70*(0.00057)^t.
Answer:
[tex]f(t) \ = \ 70 \ * \ e ^ { \ - 0.0043 \frac{1}{week} \ * \ t}[/tex]
Step-by-step explanation:
Exponentials functions are of the form:
[tex]f(t) \ = \ A \ * \ e ^ { \ b \ * \ t}[/tex]
where A and b are constants.
Now, the initial value of the exponential function its
[tex]f(0) \ = \ A \ * \ e ^ { \ b \ * \ 0}[/tex]
[tex]f(0) \ = \ A \ * \ e ^ { \ 0 \ }[/tex]
[tex]f(0) \ = \ A \ [/tex]
If the initial value must be 70, this must means:
[tex]A \ = \ 70[/tex]
So
[tex]f(t) \ = \ 70 \ * \ e ^ { \ b \ * \ t}[/tex]
We also know that it must decrease at a rate of 0.43 %, this mean that after one week we got:
[tex]100 \ \% - 0.43 \ \% = 99.57 \ \%[/tex]
[tex]f(1 week) \ = \ 70 \ * 0.9957 \ = \ 70 \ * \ e ^ { \ b \ * \ 1 \ week}[/tex]
This means :
[tex] 0.9957 \ = \ e ^ { \ b \ * \ 1 \ week}[/tex]
[tex] ln ( 0.9957) \ = \ b \ * \ 1 \ week [/tex]
[tex] \ b \ = \frac{ln ( 0.9957)}{ 1 \ week} [/tex]
[tex] \ b \ = - 0.0043 \frac{1}{week} [/tex]
So, our equation, finally, its:
[tex]f(t) \ = \ 70 \ * \ e ^ { \ - 0.0043 \frac{1}{week} \ * \ t}[/tex]